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Abstnet. Using resummation techniques. we extract estimates for the critical exponents 
I l u  and 7 of the three-dimensional O ( 3 )  (I model from the known 0 ( 1 / N ’ )  and O(l /  N’) 
field theory corrections, respectively, and compare the former with recent Monte Carla 
TCSUItS. 

The three-dimensional O(3)  U model has been of interest lately due to its close 
connection with models which describe high T, superconductors [l]. For instance, the 
Hubbard model is related, in a particular limit, to the Heisenberg model [21, which 
can be described at the critical point of the theory by the O(3) U model, which is a 
continuum field theory [3]. Subsequently, various authors [4,5] have studied the 
three-dimensional U model at finite temperature using Monte Carlo simulations on 
large lattices. They have, in particular, obtained numerical estimates for the critical 
exponent l / v  which is related to the p-function of the renormalization group equation 
at criticality via l / u =  -p’(gc),  where g, is the (dimensionless) critical coupling in d 
dimensions. The estimate was obtained by examining the model in the zero temperature 
limit, where an order-disorder phase transition occurs, and the slope of the p-function 
was determined from a linear fit to the data. 

The three-dimensional model has also been examined analytically using perturba- 
tion theory in [6] and the (non-perturbative) large N approach [7]. In [6], a three 
loop perturbative renormalization was performed in minimal subtraction near two 
dimensions and the d-dimensional p-function was then determined, from which a 
numerical estimate was obtained for 1/ U in d = 3. The non-trivial zero of this p-function 
gives the location of the phase transition and corresponds to the zero temperature limit 
of the lattice model. First, the exponent U was expressed as a double power series in 
E = d -2  and 1 / ( N - 2 )  valid to the three loop approximation. Subsequently setting 
N = 3, one obtains a divergent series which was resummed by a Borel transformation, 
whose integrand was then replaced by a [l, 21 Pad6 approximant. Substituting E = 1 
in the final expression yielded 1/ Y = 1.25 161, which is within the error bounds of the 
recent Monte Carlo result [4,5], which gave 1 / u =  1.28*0.05. Unfortunately, to 
improve on this estimate by including the four loop term of the two-dimensional 
p-function, which has been determined in [8,9], one encounters a Borel singularity 
which obstructs any resummation. (A simple pole also appears when one uses the two 
loop result [6].) One would instead have to use the five loop result which is currently 
unavailable as it appears that the Borel singularity which occurs when considering an 
even order of perturbation theory moves off the axis of integration for an odd order. 
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In the alternative non-perturbative approach to dealing with the O(3) D model, 
one replaces the symmetry group by O ( N )  and uses 1/N as the expansion parameter 
where N is large, eventually setting N = 3 at the end of the calculation. As the model 
is renormalizable in three dimensions in this approach [71, one can calculate the large 
N approximation to the critical exponents. This has been carried out to O ( l / N 2 )  for 
l / v  in three dimensions in [ 101 and in arbitrary dimensions in [ l l ,  121, and at O ( l / N 3 )  
for 9 in [13], where the previous few orders were determined in [ I  1,14, 151. However, 
the numerical estimates one obtains for the exponents by replacing N by 3 at the end 
of the calculation are not in close agreement with results of other methods [ 161, and 
indeed appear to diverge. Thus it is the purpose of this letter to apply resummation 
techniques, similar to those of the approach of [61, to obtain improved numerical 
estimates from known analytic expressions of the exponents and to demonstrate that 
one can obtain an estimate for I /  Y in close agreement with lattice calculations. Indeed 
we believe this large N resummation has not been carried out before. 

We begin by noting the values of the various exponents for the O ( N )  U model in 
three dimensions to the orders they are known. First [ l l ,  13-15] 

where v l = 8 / ( 3 r 2 )  and $(x) is the logarithmic derivative of the r-function. Also 
[11,121 

where the expansion parameter is 1/N. It was observed in [13] that setting N = 3  in 
( l ) ,  one obtains a value for 9 which is beginning to diverge from the accepted value 
of 0.04, deduced by &-expansions [ 16,171. This perhaps indicates that (1) is asymptotic 
with respect to the parameter N. However, Borel summing the three terms of (1) we 
obtain 

where L ( n )  is the Riemann zeta function. Replacing the Borel transform by a [1,2] 
Pad6 approximant and setting N = 3, leads to 

= 0.05 (4) 

for the O(3) model, which at least gives the correct order of magnitude, and is an 
improved estimate on the three loop result of [9] i.e. 0.11, Moreover, if only the first 
two terms of (1) are included, then one obtains an estimate of 0.07 for q, which suggests 
that the resummation we employ is converging to the accepted value. 

Thus having illustrated that the PadC-Bore1 approach is successful for 7, we can 
apply it equally to 1/ v. First, from ( 2 ) ,  we again note that setting N = 3, the exponent 
is diverging from the Monte Carlo result [4,5], since the subsequent corrections would 
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give l / u =  1.70, whilst the first two terms of (2) give I / u =  1.36. However, resumming 
the series in a similar way to I), we have 

=0.813 ( 5 )  

which gives 1/ U = 1.23 for the O(3) model, which is within the error bounds of the MC 
computation on the lattice. Moreover, considering the first two terms of (2) only, one 
obtains 1/ U = 1.19, which implies that the I /  N expansion is again also converging 
towards the Monte Carlo value of 1.28*0.05. We have summed U here and then 
calculated its inverse, rather than l / u  as in summing the latter one encounters Borel 

summation. 
We conclude with various remarks. First, in the resummation of the three- 

dimensional large N exponents no Borel singularities were encountered, in contrast 
to the situation when an even number of orders in perturbation theory are considered 
in the double expansion in (d-2)  and 1 / (N-2)  of the perturbative approach [6]. 

two dimensions, where E << 1, and extending it to a region where E = 1 where the model 
becomes perturbatively non-renormalizable. It is not clear therefore whether the two- 
dimensional result contains all the information required for extending to this region. 
Terms such as exp(-l/E), which are non-analytic in the coupling constant in two 
dimensions, i.e. non-perturbative, would be significant in  three dimensions, but their 

perturbation theory. As suggested by Brtzin [6], one would presumably have to include 
terms such as exp(-c/E) in the perturbative p-function to overcome the Borel sin- 
gularities. By contrast, the large N expansion of the model is renormalizable in three 
dimensions, as well as two, and is non-perturbative, being a reordering of perturbation 
theory such that chains of bubbles are summed first. Thus, no non-analytic terms are 
omitted. Further, the exponents calculated in this expansion have been determined in 
arbitrary dimensions in [U, 13, 151 and so there is therefore no extension to a region 
where the validity of the expansion is in question when one considers three dimensions. 

Secondly, we have not used other Pad& approximants, such as [2, 11, for either 
large N exponents for two reasons. First, in general terms such an approximant would 
in some sense be unnatural. For instance, the [Z, 11 Pad6 approximant will involve the 
firs! two terms of the large N expansion of their exponents in the numerator and the 
third term in the denominator of the integrand of the Borel transform. Thus if one 
were to consider the [2, 11 approximant, its natural predecessor, in  the sequence of 
approximations used to understand the convergence, is a [2,0] approximant, i.e. just 
the Borel transform itself. In practice though, with (1) and (2) it turns out both [2, 11 
Pad6 approximants have Borel singularities and cannot therefore be summed. 

Finally, we have compared our results for the exponent 7 with the &expansion of 
the 44 theory whilst the exponent l / u  with the Monte Carlo treatment of the O(3) U 
model, which may appear inconsistent. However, both models are equivalent at the 
critical point and therefore the exponents corresponding to the anomalous dimensions 
of each field ought to be equivalent. The e-expansion result for 7 is known very 
accurately [16, 171 and it is encouraging that our large N treatment of I) is converging 

jiiigiilaiiiies, i.e. p0:es in the right ha:f Bore; p:aiie, which iherefore O b G i i i C t  the 
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presence in the two-dimensional _R-function used in [h! can never he  ca!cu!a_ted from 



L200 Letter to the Editor 

towards this result. Similarly, l / v  is also known accurately from the &-expansion, but 
we have compared the result we obtain for it with other calculations in the O(3)  U 

model, such as the Monte Carlo result [4,5], and obtain good agreement with it, 
though the &-expansion result, derived from the $4 model, gives a value of 1.41 [17]. 
The reason for this discrepancy can perhaps be understood from the method used to 
deduce the O ( l / N )  and higher terms of (1) and (2). For instance, in [12, 13, 151 the 
asymptotic scaling part of the propagators are solved for in the form A[1+ 
A’(x2)””]/(x2)”, where A and A’ are amplitudes and LY the exponent of the field and 
which depends on 7. The exponent 11 v is solved by considering the corrections to the 
leading order term of this propagator. However, it is not clear whether the equivalence 
of the b4 model and the O(3) U model is preserved beyond the above leading order. 
Indeed our result for l /u, (S), is closer in agreement with the result of [4,5] as well 
as the three loop perturbative result of [6] and a more recent calculation of Pis’mak 
and Polyakov [18] which involved solving the self-consistency equations for critical 
exponents and gave l l v =  1.19 for the O(3) U model. (They obtained 7 =0.04 by the 
same method [lS].) As these methods are all different, but give very similar results for 
1/ v, this would appear to substantiate our point of view that the discrepancy could 
be perhaps due to the inequivalence of both models beyond a certain point. 

The author thanks Drs J R Honkonen and Yu M F’is’mak for discussions and for 
providing reference [ IS ] .  
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